On the graph complement conjecture for minimum semidefinite rank
نویسندگان
چکیده
منابع مشابه
On the graph complement conjecture for minimum rank
The minimum rank of a graph has been an interesting and well studied parameter 6 investigated by many researchers over the past decade or so. One of the many unresolved questions on 7 this topic is the so-called graph complement conjecture, which grew out of a workshop in 2006. This 8 conjecture asks for an upper bound on the sum of the minimum rank of a graph and the minimum rank 9 of its comp...
متن کاملOn the Graph Complement Conjecture for Minimum
The minimum rank of a graph has been an interesting and well studied parameter 6 investigated by many researchers over the past decade or so. One of the many unresolved questions on 7 this topic is the so-called graph complement conjecture, which grew out of a workshop in 2006. This 8 conjecture asks for an upper bound on the sum of the minimum rank of a graph and the minimum rank 9 of its comp...
متن کاملPolytopes of Minimum Positive Semidefinite Rank
The positive semidefinite (psd) rank of a polytope is the smallest k for which the cone of k × k real symmetric psd matrices admits an affine slice that projects onto the polytope. In this paper we show that the psd rank of a polytope is at least the dimension of the polytope plus one, and we characterize those polytopes whose psd rank equals this lower bound.
متن کاملComputing Positive Semidefinite Minimum Rank for Small Graphs
Abstract. The positive semidefinite minimum rank of a simple graph G is defined to be the smallest possible rank over all 1 positive semidefinite real symmetric matrices whose ijth entry (for i 6= j) is nonzero whenever {i, j} is an edge in G and is zero 2 otherwise. The computation of this parameter directly is difficult. However, there are a number of known bounding parameters 3 and technique...
متن کاملMinimum vector rank and complement critical graphs
Given a graph G, a real orthogonal representation of G is a function from its set of vertices to R such that two vertices are mapped to orthogonal unit vectors if and only if they are not neighbors. The minimum vector rank of a graph is the smallest dimension d for which such a representation exists. This quantity is closely related to the minimum semidefinite rank of G, which has been widely s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2011
ISSN: 0024-3795
DOI: 10.1016/j.laa.2011.03.011